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Abstract: In molecular orbital theory, the bond integral parameter k is used to calculate the bond integral β for different 
molecular structures. The bond integral parameter k, which represents the ratio of bond integrals between two atoms of a 
diatomic molecule, is a function of the bond length. This parameter is usually obtained empirically; however, it will be shown 
that k can be determined analytically by utilizing the overlap integral S. k will be calculated for different atomic orbital 
combinations (ss,pp) of σ and π interactions as a function of bond length for a carbon-carbon diatomic molecule. The results, 
which are represented graphically, indicate that different atomic orbitals in different interactions can have the same, or very close 
to the same, k values. The graphs reveal some significant features for the different atomic orbital combinations with respect to 
magnitude and profile, as well as illustrate good agreement with experimental results, which validates the utilization of the 
overlap integral calculation method for the determination of the bond integral parameter k. 
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1. Introduction 

Molecular Orbital Theory (MOT) has been used 
extensively in physical, inorganic, and organic chemistry to 
predict physical properties of a single molecule, such as 
orbital energies, bond length, bond order, bond energies, bond 
delocalization energies, and electron densities [1, 2, 3]. An 
important parameter that has been employed in MOT and has 
been used extensively in the Hückel method for molecular 
systems containing different atoms is the bond integral 
parameter k. This parameter is considered to be a scaling 
factor for bond integral calculations. 

The bond integral parameter k is very useful for large and 
complex molecular systems with many different types of 
atoms, such as DNA, and allows the general molecular orbital 
energy equation [1, 2, 3, 4] to be solved. One such application 
[4] pertains to the determination of the strength of the 
electronic coupling between two adjacent base pairs for a 
B-DNA molecule, where k values were only determined for 
2pσ and 2pπ atomic orbital pairs, which resulted in the 
calculation of 342 atomic orbital combinations. These k values 
were utilized in a 361 element energy matrix for the 
calculation of the molecular orbital wave function coefficients, 

which were then used for the electronic coupling computation. 
What is new is a detailed analysis of k for different atomic 
orbital combinations and interactions resulting in a more 
comprehensive understanding of some important and 
interesting features, as well as a comparison between the 
calculated and empirical values of k for a carbon dimer. 

By definition, the bond integral β=kβo, where β is the 
measured interaction energy between two atomic orbitals 
(which is difficult to obtain empirically), and βo represents a 
standard β defined at a specific bond length, such as the 
carbon-carbon bond distance in benzene (1.397Å). Now, β 
has been proposed [5] to also be proportional to the overlap 
integral S, which can be written as β=Sβo/So. The overlap 
integral S is a non-energy quantity [1], which can be 
determined theoretically, thus allowing for the calculation of 
k, where k=S/So, and So represents a standard overlap integral 
defined at a specific bond length. For this study, a 
homo-nuclear carbon dimer was considered, thus simplifying 
the calculations of the overlap integral S and the bond integral 
parameter k. The carbon dimer consists of two carbon atoms, 
where each carbon atom consists of a 1s orbital, 2s orbital, and 
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three 2p orbitals. Two sets of calculations were performed: 1) 
the overlap integral S values were calculated for s and p 
atomic orbitals at different energy levels and 2) the bond 
integral parameter k values were then calculated for the same 
types of atomic orbitals at different bond lengths. The data 
from the first set of calculations was used to verify the method. 
To verify the overlap integral S calculation method, principal 
quantum numbers n=1, 2, 3, and 5 were used for the σ 
interactions and n=2,3, and 5 for the π interactions. The data 
from the second set of calculations was used to evaluate the k 
values. For the evaluation of the k values, the same principal 
quantum numbers were utilized. As mentioned earlier, the 
analysis of the resulting data revealed some significant 
features of the overlap integral S and bond integral parameter k 
as a function of bond distance. 

2. Theory 

2.1. Analytical Calculations 

Before the bond integral parameter k is discussed, a review 
of the one-electron overlap integral method is required. In 
general, the one-electron overlap integral is defined [1] as 

*
, ,aa b b

S dvψ ψ= ∫                (1) 

where ψi represents the wave function (atomic orbital) for 
atom i, ψi

* the conjugate of ψi, and dv the volume element. 
Equation (1) represents the total overlap between two atomic 
orbitals because the integration is performed over all space. 
Sa,b can be expressed as 

0

*
, lim

v
aa b b

S v
δ

ψ ψ δ
→

= Σ ,           (2) 

where (2) represents the basic definition of the definite 

integral in (1). The summation is over 
* * *

1 11 2 .....a a ab b b
v v vΣψ ψ δ ψ ψ δ ψ ψ δ= + +  and δv is the change 

in the spherical volume. 
An atomic orbital is a mathematical function that describes 

the wave-like behavior of a single electron in an atom [6]. This 

function can be used to calculate the probability of finding any 
electron of an atom in any specific region around its nucleus. 
The term also may refer to the physical region or space where 
the electron can be calculated to be present, as defined by the 
particular mathematical form of the orbital [7]. The atomic 
orbitals that will be considered in this study are Slater-type 
and are designated as s and p orbitals. Examples of s and p 
orbitals for σ and π interactions are illustrated in Fig. 1. 

 
Figure 1. Three types of 1s and 2p orbital interactions for diatomic 

molecules. 

The notation used in Fig. 1 describes the two atomic orbitals 
involved and the interaction between them. As an example, 
the notation ssσ symbolizes two s orbitals in a σ interaction. 
The σ interaction involving s and p orbitals is not considered 
in this study. The equations for S for all Slater-type atomic 
orbital pairs consisting of ns, npσ and npπ atomic orbitals for 
n=1,2,3, and 5 have been formulated [8]. 

The most general equations, which were derived from (1), 
that describe the overlap integral S are 
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, α’ and β’ are 

defined as constants from exponential functions that are used 
in describing Slater-type atomic orbitals, 

,m n m na a b b
δ δ= − = − , na and nb represents the quantum 

numbers for atoms a and b, δ is a constant having a value of 
0 for n=1, 2, 3 and 1 for n=5, R is the internuclear distance, ξ 

and η are spheroidal coordinates, where 
( ) /a br r Rξ = +  and

 

( ) /a br r Rη = − , ra and rb are distances of an electron from 

atoms a and b, 1
( ) /

2
a Hbp R aµ µ≡ +

, 
( ) / ( )a ab bt µ µ µ µ≡ − +  

and µa and µb are Slater values that are listed in Table 1 (for 
the calculation of these values refer to the Appendix). 

 

Table 1. Slater µ- values for valence shell ��, �� AOs (Milliken et al 1949). 

H 1.00 C- 1.45 O- 2.10 Na 0.733 S 1.817 
Li 0.65 C 1.625 O 2.275 Mg 0.95 Cl 2.033 
Be 0.975 C+ 1.80 O+ 2.45 Al 1.167 Br 2.054 
B- 1.125 N 1.95 F 2.60 Si 1.383 I 1.90 
B 1.30 N+ 2.125   P 1.60   

The integrals in (3) can be evaluated by utilizing the 
following mathematical relation [9] for 0t =  (identical 
atomic orbitals): 

1

11
( ) [ !/ ( 1)!].

kp pk
k

A p e d e k p k
ξ µ

µ
ξ ξ µ

∞ +− −
=

≡ = − +∑∫   (4) 

For the first set of computations, the following equations are 
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utilized. 

1 3
2 0(1 ,1 ) (6) [3 ],S s s p A A

−= −             (5) 

1 5
4 2 0(2 , 2 ) (360) [15 10 3 ],S s s p A A A

−= − +        (6) 

1 7
6 4 2 0(3 ,3 ) (25, 200) [35 35 21 5 ],S s s p A A A A

−= − + −    (7) 

 1 5
4 2 0(2 , 2 ) (120) [5 18 5 ],S p p p A A Aσ σ −= − +    (8) 

1 7
6 4 2 0(3 ,3 ) (25, 200) [35 147 85 21 ],S p p p A A A Aσ σ −= − + −  (9) 

1 9
8 6 4 2

0

(5 , 5 ) (4, 233, 600) [105 504 450 224

45 ],

S p p p A A A A

A

σ σ −= − + −

+
 

(10) 

1 5
4 2 0(2 , 2 ) (120) [5 6 ],S p p p A A Aπ π −= − +      (11) 

1 7
6 4 2 0(3 , 3 ) (25, 200) [35 49 17 3 ],S p p p A A A Aπ π −= − + −  (12) 

1 9
8 6 4

2 0

(5 ,5 ) (4, 233, 600) [105 168 90

32 5 ].

S p p p A A A

A A

π π −= − +

− +
 (13) 

With the ability to determine values for S , the k values can 
therefore be obtained. For the second set of computations, a 
simple equation is applied, 

/k S So= ,                  (14) 

where S is obtained from (5) - (13), and S0 is the S value at a 

specific bond length do , defined below; for this work, the 

bond length of a carbon dimer was used. 
An accurate bond length for the carbon dimer was obtained 

from its rotational constant B [10] using the following 
equation 

2 1/2( / 8 )d h cBo π γ= ,            (15) 

where h represents Planck’s constant (in J-sec), γ the 
reduced mass (in atomic mass units), and c the speed of light 
(in cm/s). From the reported value of the rotational constant 

( 11.820053cm− ), do was found to be 1.24246 Å, which was 

employed in the calculations for the results and discussion 
section. 

2.2. Empirical Calculations 

In order to compare the empirical values of k  with the 
calculated values, the empirical values were obtained by using 
the celebrated empirical Morse potential function [11] with a 
shifting parameter to calculate the interaction energy between 
two atoms 

( ) 2( ) [1 ] ,r re
eV r D e C

α− −= − −        (16) 

where the bond dissociation energy 2 / 4e e e eD rω ω= , eω and

e erω represent vibrational constants, 
e

r the equilibrium 

distance, C a constant for shifting the reference line from zero 

to the continuum’s edge, and 7 1/21.2177 10 ( / )e ex Dα ω γ= . 

Because De and α are determined from the experimental 

values of eω and re eω , the values of V(r) can easily be 

obtained. Therefore, the bond integral parameter can be 
calculated empirically as ( ) / ( )ek V r V r= . 

3. Results and Discussion 

For the first set of calculations, the overlap integral S at 
different energy levels (principal quantum numbers) is 
depicted in Figs. 2 & 3. Figure 2 reveals two sets of curves 
defined by the general trend of S as a function of bond distance. 
The first set, which represents two s orbitals with a σ 
interaction for 1,2,and 3n = , has a maximum at 0d = Å and 

a minimum at d → ∞ Å. The second set shown in Fig. 2, 
which represents two p orbitals with a σ interaction, for 

2,3,and 5n =  (no p orbitals exist for 1n = ) also has a 

maximum at 0d = Å and S approaches zero as d extends to 
infinity. However, each curve in the second set of data also 
contains a local minimum at a specific distance that is 
dependent on n. The minima occur at a negative value of S, 
where the total overlap is dominated by the negative terms in 
(2). The first set of curves in Fig. 2 shows that the magnitude 
of S is largest for 3n = for all distances greater than zero. 
Similarly, the second set of curves in Fig. 2 also illustrates this 
same trend. This trend is predominately due to an increase in 
the size of the atomic orbitals as n increases. Furthermore, the 
position of the minima in the second set of curves shifts to 
larger distances as n increases, which is consistent with the 
trend noted above. Each minimum in the second set of curves 
represents a distance where there is an optimum overlap 
between the two p orbitals oriented along their bond axis. The 
slopes of all the curves in Figs. 2 and 3 are indicative of the 
changes in size and shape of the orbitals. The maximum and 
minimum variation in the overlap integrals correspond to the 
orbital interactions 2 2p pσ  and 3 3s sσ , respectively. 

 

Figure 2. Overlap integral versus distance for a σ interaction (color version 

online). 
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Figure 3. Overlap integral versus distance for a π interaction (color version 

online). 

The curves in Fig. 3 represent two p orbitals in a π 
interaction for 2,3,and 5n = . They are similar to the first set 
of curves in Fig. 2 but with slightly different slopes, which is 
due to the difference in the shape and size of the orbitals (Fig. 
1). These curves also exhibit the same trend (largest S value 
for the largest n value) as before, indicating a larger overlap 
value (magnitude) for a corresponding fixed distance as n 
increases. 

An important note is that the first set of curves in Fig. 2 and 
the curves in Fig. 3 have only positive overlap values because 
all the product terms are positive. On the other hand, the 
second set of curves in Fig. 2 have both positive and negative 
values, indicating that the product terms may be a mixture of 
positive and negative values. Another important note is that in 
Fig. 2, for the second set of curves, the total overlap has a 
value of zero at specific distances. This suggests that no 
bonding between the p orbitals can occur at these distances 
due to the cancellation of the individual positive and negative 
contributions. 

The trends that have been revealed in Figs. 2 & 3, with 
respect to the radial distribution function, are in agreement 
with published literature [12, 13]. In other words, for s orbitals 
in a σ interaction or p orbitals in a π interaction, as the energy 
level increases so does the orbital size, resulting in a larger 
overlap between the orbitals. However, as depicted in Fig. 2, 
for p orbitals in a σ interaction this is true only for distances 
less than those of the local minima. 

Because a carbon dimer was considered for the calculation 
of the k values, only the 1 1 ,  2 2 ,  2 2s s s s p pσ σ σ  and 

2 2p pπ  orbital interactions will be utilized in this discussion. 

For the second set of calculations, which pertain to the 
evaluation of the k values for the same types of atomic orbitals 
at different bond lengths, Fig. 4 depicts similar profiles for the 
orbital interactions 1 1 ,  2 2 ,  2 2s s s s p pσ σ π  when compared 

to Figs. 2 & 3. However, the 2 2p pσ orbital interaction 
profile is approximately an inverse of that in Fig. 2. The 
reason for this discrepancy is because the orbital interactions 

1 1 ,  2 2 ,  2 2s s s s p pσ σ π  all have positive overlap integral 

values, whereas the orbital interaction 2 2p pσ  does not. The 

inverse effect is a result of having a negative overlap integral 
value for 1.24246d do= = Å, resulting in a negative So

 

value. All four curves in Fig. 4 intersect at the same point, 
where 1k =  and d = do

. This is expected because k 

represents the ratio of /S So
 and So

 was defined at do
. 

The maximum and minimum variations in k occur for the 
orbital interactions 2 2p pσ  and 2 2s sσ  respectively. Note 

that the 1 1 ,  2 2 ,  and 2 2s s s s p pσ σ π  orbital interactions have 

similar k values for 1.24246d ≥ Å, and that these k values are 

less than those for the 2 2p pσ  interactions. Hence, at these 

distances 

2 2 2 21 1 2 2

.
1 1 2 2 2 2 2 2

p p p ps s s s
S S S S

s s s s p p p p
S S S So o o o

π σσ σ

σ σ π σ≈ ≈ 〈       (17) 

 

Figure 4. Bond integral parameter versus distance for σ and π interactions 

(color version online). 

Therefore, for bond lengths less than do , the 1 1s sσ
interactions dominate, but at distances between do  and 3.5 Å, 

the 2 2p pσ interactions prevail. 

It is also noteworthy that the orbital interaction 2 2p pσ  

has a k value of zero for 0.80d ≈  Å, which is not true for the 
other curves. This corresponds to the overlap integral having a 
value of zero for the orbital interaction 2 2p pσ  as illustrated 

in Fig. 2. Therefore, at 0.80d ≈ Å, no σ bonding between 2p 
orbitals can occur, which implies that for any stacked 
conjugated molecular system, such as stacked benzene 
molecules or base pairs of a B-DNA molecule, there will be no 
charge transfer between the stacked molecules at this distance. 

With regards to the empirical values of k, experimental 
values of the vibrational constants  and re e eω ω  for an 

electronic state g
+Σ  for 2C  [11, 14] and a C value of -7.6 eV 

were considered. As depicted in Fig. 5, the profiles of both the 
calculated and experimental curves are quite similar with both 
having the same maximum value, but at slightly different 
positions, and almost the same value at 1.0d = Å and 
approaching zero at 4.8d ≈ Å. Also indicated is the fact that 
the experimental values decreases somewhat more quickly as 
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compared to the calculated values. However, the close 
agreement between the two curves and the information 
presented earlier validates the utilization of the overlap 
integral calculation method for the determination of the bond 
integral parameter k. 

 

Figure 5. Bond integral parameter versus distance for σ interactions for 

calculated and experimental results (color version online). 

4. Conclusion 

In this paper it is shown that the analytical method for 
calculating the bond integral parameter by using the overlap 
integral is indeed a genuine approach. The results revealed 
that different atomic orbitals in different interactions can have 
almost the same, if not the same, k values. The important 
features of the different atomic orbital combinations with 
regard to magnitude and profile disclose the fact that for 
npnpσ interactions, where 2,3,  or 5n = , no σ bonding will 
occur at specific distances. The validation of this method is 
supported by the close correlation between the analytical and 
empirical results. 
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Appendix 

A Slater µ-value represents the effective nuclear charge of 
an atom as defined by 

effZ Z sµ = = − , 

where Z and s are the actual nuclear charge and screening 
constant, respectively. For determining µ, the electrons are 
divided into the following groups, each having a different 
screening constant: 

1 ;  2 , ;  3 , ;  3 ;  4 , ;  4 ;  4 ;  .s s p s p d s p d f etc  

The general equation for calculating the Slater µ-values is 

[ 0.35( 1) 0.85 1.00 ] / ,lastgroupZ a b c nµ = − − − −      (A1) 

where a is number of electrons in last group with principle 
quantum number lastgroupn , b is number of electrons in the 

group with principle quantum number 1lastgroupn − , and c is 

number of electrons in all groups with principle quantum 
number ' 1lastgroupn n〈 −  (for 2 ' 0 0)lastgroupn n c= ⇒ = ⇒ = . 

To obtain the values shown in Table 1, only the 2s,p group 
needs to be considered. Therefore, (A1) becomes 

2 [ 0.35( 1) 0.85 1.00(0)] / 2sp Z a bµ = − − − − .       (A2) 

As an example, we consider a carbon atom, where 
6carbonZ = and the electronic configuration is 2 2 21 2 2s s p . 

Then, (A2) is written as 

2 [6 0.35(4 1) 0.85(2) 1.00(0)] / 2 1.625.spµ = − − − − =  
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