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Abstract: Quantitative Structure Toxicity Relationship (QSTR) study was applied to a dataset of 35 polychlorinated 

dibenzofurans (PCDFs) to investigate the relationship between toxicities of the compounds and their structures by employing 

Density Functional Theory (DFT) (B3LYP/6-31G*) method to compute their quantum molecular descriptors. The model was 

built using Genetic Function Algorithm (GFA) approach. The model (N= 24, Friedman LOF = 0.361, squared correlation 

coefficient (R
2
) = 0.963, R

2
adj = 0.955, cross-validation correlation coefficient (Q

2
)

 
= 0.889, external prediction ability (R

2
pred) = 

0.8286, P-value of optimization at P95% ˂ 0.05) of the best statistical significance was selected. The accuracy of the model was 

evaluated through Leave one out (LOOV) cross-validation, external validation using test set molecules, Y-randomization and 

applicability domain techniques. The results of the present study are expected to be useful to the environmental regulatory 

agencies locally and internationally in the area of environmental risk assessment of toxicity of Polychlorinated dibenzofurans 

(PCDFs) and other related Polychlorinated aromatic compounds/ pollutants that fall within the model’s applicability domain. 
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1. Introduction 

One of the important aspect of modern toxicology research 

is the prediction of toxicity of environmental pollutants from 

their molecular structure in which a quantitative risk 

assessment becomes increasingly important in the modern 

society and is slowly incorporated into legislation of different 

countries. For instance, the European Union (EU) has 

introduced the Registration, Evaluation and Authorization of 

Chemicals (REACH) program for assessment of human and 

environmental risk of all chemicals that are produced or 

imported in the amount greater than 1 ton per year.  

One of the important aspect of modern toxicology research 

is the prediction of toxicity of environmental pollutants from 

their molecular structure. The potential toxicity of 

compounds could be assessed on the basis of a wide variety 

of physicochemical and biological properties
 

[1]. These 

physicochemical and biological properties of molecules 

constitute their molecular descriptors. 

Polychlorinated dibenzofurans (PCDFs) are 

polychlorinated aromatic compounds that represent a group 

of environmental contaminants known by their ubiquitous 

distribution, resistance to biological and chemical 

degradation, high toxicity and bioaccumulation [2]. They can 

have a significant impact on the health and well-being of 

human and animals [2]. Some of the health effect at long 

exposure to these compounds include liver enlargement and 

lesions, immunotoxicity, a wasting syndrome, spleen atrophy, 

carcinogenesis, endocrine disruption, and extreme cases, 

death [3]. In addition to these, several persistent organic 

pollutants (e.g. PCDFs) are suspected to contribute to the 

increasing prevalence and risk of type 2 diabetes [4].
  

Polychlorinated dibenzofurans (PCDFs) are mainly formed 

or produced from as byproducts of various industrial 

processes and incomplete combustion of wastes such as 

medical or municipal wastes incineration, including burning 

of many materials that contain chlorine and polychlorinated 
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chemicals [5-6].
 

Quantitative structure activities relationship 

(QSAR/QSTR) as an important area of chemo metrics has 

been the subject of a series of investigations [7]. In order to 

ensure a safer environments and quicker estimation of the 

environmental behaviors of PCDFs, quantitative structure–

toxicity relationship (QSTR) models, which correlate and 

predict toxicity data of compounds from their molecular 

structural descriptors have been developed over the years, 

providing valuable approach in research into the toxicity of 

compounds without necessarily embarking on the 

conventional laborious, time consuming and expensive 

experiments. QSTR has been widely applied to evaluate and 

predict toxicity of chemicals [8]. Previous studies have 

shown that reliable QSTR models are not only applied to 

predict toxicity and provide basic data to risk assessment, but 

also used to explain the toxicity mechanisms [9]. 

The alternative hypothesis to this study includes: 

The magnitude of the observed toxicity log (1/EC50) of 

Polychlorinated dibenzofurans (PCDFs) are direct function of 

the empirical property (ies) or the theoretical parameter(s) 

which makes the descriptor of the total chemical structure of 

the compounds under investigation. 

The null hypothesis to this research includes; 

The observed toxicity log (1/EC50) of Polychlorinated 

dibenzofurans (PCDFs) is independent of the descriptors of 

their total chemical structures. 

The aim of this study is to build a robust, reliable and 

rational Genetic Function Algorithm approximation (GFA) 

based QSTR models to predict the toxicity of Polychlorinated 

dibenzofurans (PCDFs) by exploring the correlations 

between the experimental log (1/EC50) of the compounds and 

their calculated molecular descriptors. It is expected that the 

information in this study would provide a fast, economical, 

more environmental friendly approach and less time 

consuming techniques of accessing the toxicity of 

Polychlorinated dibenzofurans (PCDFs) and other related 

toxic Polychlorinated aromatic compounds and Organic 

pollutants that could endanger our environment. 

2. Materials and Methods 

The materials used in this study include; Dell
®
 computer 

system (Intel Pentium), 4.80 GHz processor, 8GB RAM size 

on Microsoft windows 7 Ultimate operating system, Spartan 

14 V.1.1.0, ChemDraw Ultra 12.0. V, Padel descriptor tool kit 

and Microsoft office Excel 2013 version, Material Studio 

(modeling and simulation software) version 7.0, and Dataset 

Division GUI v 1.2 software. The various steps invoked for 

the QSTR study are presented in the flowchart in Figure1 

 
Figure 1. Steps invoked in the QSAR Study. 

2.1. Data Collection 

A data set of Polychlorinated dibenzofurans (35 PCDFs) 

used for the QSTR analysis was selected from the literature
 

[10]. The Chemical structures and experimental log (1/EC50) 

values for studied compounds are represented in Table 1. 

Table 1. Chemical structures and experimental log (1/EC50) values of (PCDFs). 

S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

1 

 
2-Chlorodibenzofuran 

3.55 

2 

 
1,2,4,6,8-Pentachlorodibenzofuran 

5.51 

3 

 
1,2,3,7,8-Pentachlorodibenzofuran 

7.13 

O

Cl
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S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

4 

 
2,3,4,7,9-Pentachlorodibenzofuran\ 

6.70 

5 

 
1,2,3,7,9-Pentachlorodibenzofuran 

6.40 

6 

 
2,3,4,7,9-Pentachlorodibenzofuran 

6.70 

7 

 
1,3,4,7,8-Pentachlorodibenzofuran 

6.70 

8 

 
2,3,4,7,8-Pentachlorodibenzofuran 

7.82 

9 

 
1,2,4,7,8-Pentachlorodibenzofuran 

5.89 

10 

 
1,2,3,7,8-Pentachlorodibenzofuran 

7.13 

11 

 
1,2,3,4,8-Pentachlorodibenzofuran 

6.92 

12 

 
1,2,4,7,9-Pentachlorodibenzofuran 

4.70 

13 

 
1,2,4,6,7-Pentachlorodibenzofuran 

7.17 

14 

 

6.64 

O

Cl

Cl Cl

Cl

Cl
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S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

1,2,3,4,7,8-Hexachlorodibenzofuran 

15 

 
1,2,3,6,7,8-Hexachlorodibenzofuran 

6.57 

16 

 
1,2,4,6,7,8-Hexachlorodibenzofuran 

5.08 

17 

 
2,3,4,6,7,8-Hexachlorodibenzofuran 

7.33 

18 

 
1,2,3,7-Tetrachlorodibenzofuran 

6.96 

19 

 
2,3,4,7-Tetrachlorodibenzofuran 

7.60 

20 

 
1,2,3,6-Tetrachlorodibenzofuran 

6.46 

21 

 
2,3,6,8-Tetrachlorodibenzofuran 

6.66 

22 

 
1,2,4,8-Tetrachlorodibenzofuran 

5.00 

23 

 
2,3,7,8-Tetrachlorodibenzofuran 

7.39 

O

Cl

Cl

Cl Cl

Cl

Cl

O

Cl

Cl

Cl

Cl

O

Cl

Cl

Cl

Cl
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S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

24 

 
1,3,6,8-Tetrachlorodibenzofuran 

6.66 

25 

 
2,3,4,8-Tetrachlorodibenzofuran 

6.70 

26 

 
2,3,4,6-Tetrachlorodibenzofuran 

6.46 

27 

 
2,6,7-Trichlorodibenzofuran 

6.35 

28 

 
2,3,8-Trichlorodibenzofuran 

6.00 

29 

 
2,3,4-Trichlorodibenzofuran 

4.72 

30 

 
2,6-Dichlorodibenzofuran 

3.61 

31 

 
4-Chlorodibenzofuran 

3.00 

32 

 
3-Chlorodibenzofuran 

4.38 

33 

 
1,3,8-Trichlorodibenzofuran 

4.07 

O

Cl

Cl

Cl

Cl

O

Cl

Cl

Cl
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S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

34 

 
1,3,6-Trichlorodibenzofuran 

5.36 

35 

 
2,8-Dichlorodibenzofuran 

3.59 

 

2.2. Molecular Optimization and Descriptors Calculation 

Optimization is the process of finding the equilibrium or 

lowest energy geometry of molecules. The chemical structure 

of each compound was drawn with ChemDraw ultra version
 

[11] 12.02 module of the program and subsequently imported 

into Wave function program Spartan ‘’14’’ version [12] 1.2.2 

for structural minimization. The geometries of all the 

compounds (35 PCDFs) were optimized by means of Density 

functional theory (DFT) using B3LYP level of theory and 6-

31G* as the basis set. The molecular descriptors were 

calculated by using paDel descriptor tool kit and Spartan 

“14” software. The most significant descriptors were 

identified using the Genetic Function Approximation (GFA) 

algorithm. Molecular descriptors simply refer to arithmetical 

values that describe properties of molecules obtained from a 

well-defined algorithm or experimental procedure [13]. The 

various 0D, 1D, 2D and 3D descriptors were calculated. 

2.3. Data Set Division into Training and Test Set 

The training set comprises of molecules used in model 

development while the test set is made up of molecules not 

used in building the model that are used in the external 

validation of the model i.e. evaluation of its prediction 

abilities. Dataset Division GUI v 1.2 software was used to 

divide the data set of the studied compounds into a training 

set of 24 PCDFs (70%) and a prediction set (test set) of 11 

PCDFs (30%) respectively. 

2.4. Genetic Function Algorithm and Model Building 

In this study, a statistical technique of analysis by Genetic 

function approximation algorithm was employed to build the 

models. Genetic function approximation (GFA) algorithm is 

a search method to find exact or approximation solution to 

optimization and search problems which is based on the 

principles of Darwinian evolution
 
[14]. 

A peculiar features of Genetic function approximation 

(GFA) algorithm is that it generate a population of equations 

rather than a single equation as do most other statistical 

methods. The range of variations in this population gives 

added information on the quality of fit and importance of the 

descriptors
 
[15]. The fitness function or Lack of Fit (LOF) 

used to estimate the quality of the model here was the leave 

one out gross validated correlation coefficient (Q
2

LOO) and is 

calculated by this equation 

��� �
���

�	
�	�
�∗����

	�

                       (1) 

Where c is the number of basic functions, d is the 

smoothing parameter, M is the number of samples in the 

training set, LSE is the least square error and P is the number 

of features contained in all basis functions [16].
 

2.5. Validation of Developed Model 

The predictive ability of the developed QSTR model were 

evaluated using both internal and external statistical 

validation parameters. The validation parameters were 

compare with the minimum recommended value for a 

generally acceptable QSAR/QSTR model proposed by 

Revinchandran et al [17] shown in Table 2. 

Table 2. Validation parameters for a generally acceptable QSAR model. 

S/N Symbol Name Range 

1 R2 Coefficient of determination ≥ 0.6 

2 Q2 Gross validation coefficient > 0.5 

3 R2 pred. 
Coefficient of determination for 

external test set 
≥ 0.6 

4 R2 adj Adjusted square correlation coefficient > 0.5 

5 p (95%) Confidence interval at 95% ≤ 0.05 

6 Next test set Minimum number of extend test set ≥ 5 

7 R2 – Q2 Difference between R2 and Q2 ≤ 0.3 

APPLICABILITY DOMAIN (AD) 

The model was further validated by applying the Williams 

plot, the plot of the standardized residuals versus the leverage 

as shown in Fig. 2. This was exploited to visualize the 

applicability domain (AD) [18]. (Leverage indicates a 

compound’s distance from the centroid of X. The leverage of 

a compound in the original space is defined as; 

                            (2) 

where �� is the descriptor vector of the considered compound 

and X is the descriptor matrix derived from the training set 

descriptor values. 

The warning leverage (h*) is defined as: 
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h
*
 � 3

(�

)

�
                                        (3) 

Where n = number of training compounds, p = number of 

predictor variables 

3. QSTR Results 

Table 5. Models generated by GFA. 

S/N Equation Definition 

1. 

Y = 67.283 * X273  

+ 30.319* X388 X273: MATS2e 

+ 71.368 * X646 X388: SpDiam_Dzv 

- 31.859 * X850 X646: SHBa 

- 62.577 X850: XLogP 

2. 

Y = 70.468* X273  

+ 70.901 * X646 X273:MATS2e 

+ 27.833 * X810 X646: SHBa 

- 25.951 * X850 X810: SpDiam_D 

- 65.761 X850:XLogP 

3. 
Y = 12.864* X55  

+ 55.475 * X68 X55: BD: ATS5i 

S/N Equation Definition 

+ 44.384 * X273 X68: AATS0m 

- 21.059 * X665 X273: MATS2e 

- 46.498 X665: maxwHBa 

4. 

Y = 404.661* X109  

+ 49.204 * X273 X109: DF: AATS5i 

+ 415.328* X431 X273: MATS2e 

- 17.126 * X665 X431: SM1_Dzi 

- 442.707 X665: maxwHBa 

5. 

Y = 39.983631205 * X97  

+ 4.055892341 * X235 X97: AATS2p 

+ 43.096234880 * X273 X235:AATSC5i 

- 19.022551018 * X665 X273: MATS2e 

- 33.547 X665: maxwHBa 

Table 6. Statistical parameters of the best model. 

Model R2 R2
adj F-Value R2

cv Friedman LOF 

1 0.963 0.955 122.008 0.889 0.361 

Based on statistical significance, model 1 is chosen as the 

best model. 

Table 7. A brief description of the selected descriptors of the best model-1. 

Descriptor Regression coefficient Description Descriptor Class 

MATS2e 67.283 
Moran autocorrelation - lag 2 / weighted by Sanderson 

electronegativities 
Autocorrelation Descriptor 

SpDiam_Dzv 30.319 
Spectral diameter from Barysz matrix / weighted by van 

der Waals volumes 
Barysz Matrix Descriptor 

SHBa 71.368 Sum of E-States for (strong) hydrogen bond acceptors Electro topological State Atom Type Descriptor 

XLogP -31.859 XLogP XLogP Descriptor 

Table 8. Comparison of Experimental log (1/EC50) and predicted log (1/EC50) of training set molecules by model 1. 

S/N Chemical Names Experimental log (1/EC50) Predicted log (1/EC50) Residual log (1/EC50) 

1 1,2,4,6,8-Pentachlorodibenzofuran 5.510 5.273 0.237 

2 1,2,3,7,9-Pentachlorodibenzofuran 6.400 6.265 0.135 

3 2,3,4,7,9-Pentachlorodibenzofuran 6.700 7.077 -0.377 

4 1,3,4,7,8-Pentachlorodibenzofuran 6.700 6.984 -0.284 

5 2,3,4,7,8-Pentachlorodibenzofuran 7.820 7.988 -0.168 

6 1,2,3,7,8-Pentachlorodibenzofuran 7.130 7.176 -0.046 

7 1,2,3,4,8-Pentachlorodibenzofuran 6.920 6.658 0.262 

8 1,2,4,7,9-Pentachlorodibenzofuran 4.700 4.706 -0.006 

9 1,2,3,4,7,8-Hexachlorodibenzofuran 6.640 6.359 0.281 

10 1,2,3,6,7,8-Hexachlorodibenzofuran 6.570 6.409 0.161 

11 1,2,4,6,7,8-Hexachlorodibenzofuran 5.080 5.396 -0.316 

12 2,3,4,6,7,8-Hexachlorodibenzofuran 7.330 7.251 0.079 

13 1,2,3,7-Tetrachlorodibenzofuran 6.960 6.922 0.038 

14 2,3,4,7-Tetrachlorodibenzofuran 7.600 7.744 -0.144 

15 1,2,3,6-Tetrachlorodibenzofuran 6.46 6.429 0.030 

16 2,3,6,8-Tetrachlorodibenzofuran 6.660 6.483 0.177 

17 2,3,7,8-Tetrachlorodibenzofuran 7.390 7.384 0.006 

18 2,3,4,8-Tetrachlorodibenzofuran 6.700 6.833 -0.133 

19 2,6,7-Trichlorodibenzofuran 6.350 5.788 0.562 

20 2,3,4-Trichlorodibenzofuran 4.720 4.793 -0.073 

21 4-Chlorodibenzofuran 3.000 3.336 -0.336 

22 3-Chlorodibenzofuran 4.380 3.909 0.470 

23 1,3,8-Trichlorodibenzofuran 4.070 4.518 -0.448 

24 2,8-Dichlorodibenzofuran 3.590 3.697 -0.107 
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Figure 2. Plot of predicted (Training & Test sets) versus the observed log (1/EC50) values. 

 
Figure 3. Scattered plot of the experimental and predicted log (1/EC50) test set molecules. 
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Figure 4. Williams plot of the model 1. 

Table 9. The results of Y-randomization of the Training set. 

Model R R^2 Q^2 

Random 1 0.7141 0.510 -1.793 

Random 2 0.465 0.216 -1.129 

Random 3 0.375 0.140 -30.571 

Random 4 0.313 0.098 -21.643 

Random 5 0.210 0.044 -46.378 

Table 10. Random models parameters. 

Average R: 0.370 

Average R^2: 0.162 

Average Q^2: -16.107 

cRp^2: 0.633 

4. Discussions 

Model 1 gives the best GFA derived QSTR model for 

predict the p1/EC50 of PCDFs. The result of the GFA QSTR 

model is in conformity with the standard shown in Table 2 as 

N = 24, Friedman LOF = 0.361, R
2
 = 0.963, R

2
adj. = 0.955 

R
2
cv

 
= 0.889, R

2
pred= 0.8286, P95% ˂ 0.05. This confirms the 

robustness of the model. 

Figure 2 reveal the agreement between the experimental 

and the predicted values of p1/EC50 of molecules in the test 

set. The high Linearity of this plot indicate a sound 

agreement between the experimental and predicted values 

indicative of the high internal accuracy of the model. 

Likewise, Figure 3 gives a combine plot of the 

experimental and the predicted values of p1/EC50 training 

and test set molecules. The high linearity of the plot is 

indicative of an excellent external predictive power of the 

model. The comparison of experimental and predicted 

p1/EC50 of the compounds is presented in Table 8. The 

predictability of model 1 is evidenced by the low residual 

values observed in the Table.  

The P-value of the optimization model at 95% confidence 

level shown has α value ˂ 0.05. This reveals that the 

alternative hypothesis that the magnitude of the observed 

toxicity of PCDFs is a direct function of the descriptors of 

their total chemical structures takes preference over the null 

hypothesis which states otherwise. 

The statistical significance of the relationship between the 

toxicity of PCDFs and their molecular descriptors was further 

demonstrated by Y-randomization procedure. The results of 

Y-randomization test as well as the random models 

parameters are shown in Tables 9 and 10 respectively. The 

low R
2
 and Q

2
 values obtained shows that the optimization 

model is robust and was not obtained due to a chance 

correlation. The fact that the value of cR
2
p of the model is > 

0.5 as reported in the Table 10 is a good confirmation that the 

model is robust and very reliable.
18

 

Since the model 1 cannot predict the toxicity of all 

compounds in the universe, its applicability domain was 

determined using William’s plot shown in Fig. 4. All the 

compound in the test set fall inside the domain of the GFA 

model (the warning leverage h* =0.40). There are only two 

compounds in the training set which have the leverage higher 

than the warning h* value as shown in the plot, thus they can 

be regarded as structural outliers. This implies that the 

models can be successfully applied to this series of 

Polychlorinated dibenzofurans. The few compounds with 

higher leverage than h* are most likely to be structural 

outliers. 

Significance of the Descriptors in the Model 1 

The positive coefficient of the descriptors; MATS2e, 

SpDiam_Dzv, SHBa reveal that the toxicity of PCDFs 

increases with increase in the values of these descriptors. 

Thus, the higher the values of these descriptors in a PCDFs, 

the more the toxicity of the molecule and vice versa. Also, 

the negative coefficient of XLogP descriptor as an indication 

that the value of this descriptor in PCDFs varies inversely 

with its toxicity. The percentage contribution of each 

descriptor in the model include; 33.50% (MATS2e), 15.1% 

(SpDiam_Dzv), 35.5% (SHBa), 15.9% (XLogP). Judging 

from the percentage contribution of each descriptor in the 

model, MATS2e and SHBa descriptors were found to 

predominantly influence the observed toxicity of PCDFs. 

MATS2e (Moran autocorrelation / weighted by Sanderson 
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electro negativities) is a descriptor of electronegativity of the 

molecules. Its positive coefficient in the model reveals that 

the toxicity of PCDFs varies directly with the value of this 

descriptor in the molecule. This is consonance with the 

findings of Emilia et al. (2011) [19] in which the observed 

toxicity of aromatic nitro-derivatives was influence by a 

descriptor of molecular electronegativity, X1.  

SpDiam_Dzv (Spectral diameter from Barysz matrix 

weighted by van der Waals volumes) is a descriptor of 

molecular size. Its positive coefficient in the model reveals 

that the toxicity of PCDFs varies directly with the value of 

this descriptor in the molecule. This is agreement with the 

findings Falandysz et al. (2001)
 
[20] in which vander waal’s 

volume (size descriptor) of dioxins has a pronounce influence 

on the observed toxicity of the molecules. Also in agreement 

is the results of the QSTR modelling by Hassan et al. (2016) 

[21] in which ETA-dAlpha-B (a measure of electronic 

features of the molecules relative to molecular size) was 

found to influence the toxicity of the studied dioxins. The 

increase in toxicity with increase in molecular size may be 

due to the possibility of the molecule been largely confined 

to the plasma compartment because of their too large size 

affecting its distribution via out the body. 

XLogP is a descriptor of lipophilicity of molecules. Its 

negative coefficient in the model is an indication that the 

value of this descriptor varies inversely with the toxicity of 

the molecules and vice versa. 

SHBa (Sum of E-States for (strong) hydrogen bond 

acceptors), just as the name implies is a descriptor of 

hydrogen bond acceptor ability of a molecule. Its positive 

coefficient in the model reveals that the toxicity of PCDFs 

varies directly with the value of this descriptor in the 

molecule. This is in agreement with the findings of Lipinski 

et al. (2001)
 
[22] and van de et al. (2003)

 
[23]. The increase 

in toxicity of PCDFs with increase in values of hydrogen 

bond acceptor descriptors may be due to the possibility of 

this descriptor eliciting some interaction of the toxic 

molecules with biological macromolecules such as enzymes 

or cellular receptors. 

5. Conclusion 

In this study, a model to predict toxicity of Polychlorinated 

dibenzofurans (35 PCDFs) in exploring the structural 

features (descriptors) that are responsible for its toxicity was 

successfully computed using Genetic Function Algorithm 

(GFA) approximation approach at B3LYP level of theory and 

6-31G* as basis set. The observed log (1/EC50) of the 

Polychlorinated dibenzofurans (PCDFs) was found to be 

predominantly influenced by MATS2e, SpDiam_Dzv, SHBa 

and XLogP descriptors. The robustness, reliability, stability 

and applicability of the model was established by internal 

and external validation techniques (N= 24, Friedman LOF = 

0.361, squared correlation coefficient (R
2
) = 0.963, R

2
adj = 

0.955, cross-validation correlation coefficient (Q
2
)

 
= 0.889, 

external prediction ability (R
2
pred) = 0.8286, P-value of 

optimization at P95% ˂ 0.05). 

It is believed that the information in this model would be 

useful to the environmental regulatory agencies locally and 

internationally in the area of environmental risk assessment 

of toxicity of Polychlorinated dibenzofurans (PCDFs) and 

other related Polychlorinated aromatic toxic compounds/ 

pollutants which are being frequently released into our 

environment as a result of increasing industrial activities and 

incomplete combustion of various processes such as medical 

and domestic wastes incineration. 
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